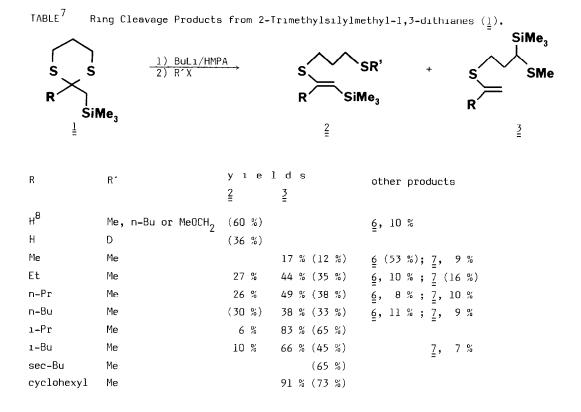

UNUSUAL RING CLEAVAGE REACTIONS OF 2-SUBSTITUTED 1,3-DITHIANES. ACCESS TO 2-ALKYLTHIOVINYLSILANES.

T.A. Hase^m and L. Lahtinen

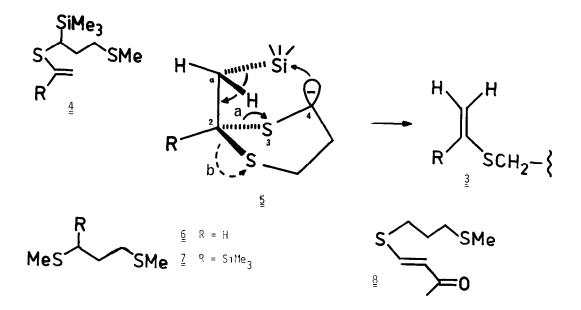
University of Helsinki, Department of Chemistry Vuorikatu 20, Helsinki 10, Finland

Two new cleavage reactions, under carbanion forming conditions, of the 1,3-dithiane ring system are reported.

In connection with another study, various 2-alkyl-2-trimethylsilylmethyl-1,3-dithianes $\frac{1}{2}$ were required. Applying 2-lithio-],3-dithiane chemistry, there are two possible routes (A and B) to these compounds:



Indeed, route B was found to give ready access to $\underline{1}$, whereas the more general route A, using n-BuLi for lithiodifhiane generation, gave but low yields of $\underline{1}$. Seeking to improve the latter the reaction was performed in the presence of 2 eq's of HMPA which is known to give "naked", i.e., more reactive carbanions. This however completely changed the outcome as the isolated product was shown to be $\underline{2}$ (R = H), obviously a result of carbanion formation α to silicon, followed by thiolate elimination and alkylation¹. The alternative deprotonation at diffiane C-2 is apparently not favoured, possibly becau e of steric reasons or the destabilising effect of the Si atom towards β -carbanionic sites.


$$\frac{1}{2} (R = H) \xrightarrow{1} \frac{BuL_{1}/HMPA}{2} \xrightarrow{S} SMe \xrightarrow{2} R SiMe_{3}$$

In view of the above result, we were interested in seeing whether analogous 2-alkyl derivatives (2, R = alkyl) would be available from \underline{i} (R = alkyl). This indeed turned out to be the case (see Table) but now a competing ring cleavage reaction also operates, giving

the Me₃S1-migrated products² $\underbrace{3}$ (R = alkyl; Table). In fact, the formation of $\underbrace{3}$ is the dominant reaction pathway, to the near or complete absence of vinylsilanes $\underbrace{2}$, when the R alkyl group is branched. Presumably, in the last-mentioned cases, a bulky 2-alkyl substituent will severely restrict the accessibility towards base of the α -CH₂ group. Instead, an unusual³ proton abstraction from dithiane C-4 takes place. If the 2-silylmethyl side chain is axial in a twist or chair ring conformation⁴, the C-4 carbanionic center will be sufficiently close to Si to allow C-4 to Si bond formation. Following Si-CH₂(α) bond cleavage, the C-2 to C(α) double bond is formed with suprafacial expulsion of S-3 as the thiolate anion (see $\underbrace{5}$, route a), as the substituents are then properly aligned at C-2 and C(α) for these to become sp² hybridised. Double bond formation via S-1 thiolate expulsion ($\underbrace{5}$, route b) would require rotation about the C(α) – C-2 bond <u>after</u> (α)-anion formation, which explains why the isomeric $\underbrace{4}$ is not formed⁵.

The 2-alkylthiovinylsilanes $\frac{2}{2}$ are an interesting class of functionalised silylalkenes⁶, and obviously have potential for further chemical elaboration. Thus, for example, $\frac{2}{2}$ (R = H) was Friedel-Crafts acylated to furnish 8 (46 %).

In view of the widespread use of 1,3-dithiane derivatives as acyl anion equivalents, we find it remarkable how readily this ring system may undergo (premature) cleavage, either via side chain or, more surprisingly, via ring C-4 deprotonation.

A representative experimental procedure follows: n-BuLi in hexane (2.1 M, 4 mmol) was added within 2 min at 0° to a solution of 2-isopropyI-2-trimethyIsiIyImethyI-f,3-dithiane (0.5 g, 2 mmol) and HMPA (0.7 ml, 4 mmol) in THF (6 ml) under Ar. After 1 min, methyl iodide (0.25 ml, 4 mmol) was added. After 1 h, water was added and the mixture extracted with ether, dried and 3-methyl-2-(3-methylthio-3-trimethylsilyIpropylthio)-1-butene isolated by prep. ILC (silica gel, hexane-CH₂Cl₂ l0:1) in 65 % yield (0.338 g); ¹H NMR & (CCl₄) 4.97 and 4.62 (each 1 H, s), 3.0-2.7 (2 H, m), 2.7-1.6 (4 H, m), 2.10 (3 H, s), 1.12 (6 H, d, 7 Hz), 0.10 (9 H, s); ¹³C NMR & (CDCl₃) -2.1 (SiMe₃), 17.3 (SMe), 22.5 (Me₂), 29.4 and 29.6 (CH₂CH₂), 33.6 (CH-S), 35.9 (CH), 102.4 (=CH₂), 152.4 (S-C=); m/z 262 (18 %), 247 (3), 147 (19), 142 (44), 141 (16), 105 (16), 99 (52), 73 (100).

<u>Acknowledgement</u> We are grateful to Dr. J. Taskinen (Orion Pharmaceuticals) for GC-MS assistance.

Footnotes and references

- Related ring cleavage reactions have been reported to occur with 2-(1,3-dithiane)acetic esters. See C.G. Kruse, A.C.V. Janse, V. Dert and A. van der Gen, <u>J. Org. Chem</u>. <u>44</u>, 2916 (1979).
- These 2-alkylthio-l-alkenes must be isolated and purified under strictly non-acidic conditions. Traces of acid (as in bench CHCl₃, for example) suffice to cause isomerisation into the thermodynamically more stable 2-alkylthio-2-alkenes.

- 3. 2-Cyclohexylidene-1.3-dithiane has been deprotonated at C-4 (BuLi/THF, 0⁰, 24 h; LDA/ HMPA deprotonates allylically): D. Seebach and M. Kolb, <u>Justus Liebigs Ann. Chem.</u>, 811 (1977).
- 4. Results of NMR studies to obtain evidence for this requirement will be reported shortly.
- 5. Structures $\frac{3}{2}$ were assigned (and $\frac{4}{2}$ excluded) by NMR and mass spectra. The latter characteristically show an intense peak at m/z 147 which is also shown by $\frac{7}{2}$, and corresponds to ${}^{+}CH_{2}CH(SMe)SiMe_{3}$. Peaks resulting from the attachment of Me₃Si to the alternative site (cf. $\frac{4}{2}$) were absent from the mass spectra.
- 6. Analogous 1,2-disubstituted ethenes (2, R = H, E + Z mixtures) have been made by homolytic addition of RSH to HCECSIMe₃. See M.G. Voronkov, V.I. Rakhlin, R.G. Mirskov, S.K. Khangazheev, O.G. Yarosh and E.O. Tsetlina, <u>Zh. Obshch. Khim</u>. 49, 119 (1979).
- 7. GC yields; isolated yields (prep. TLC) in parentheses. New 2-alkyl-2-trimethylsilylmethy 1,3-dithianes, and isolated products, were fully characterised by the usual physical methods. The \underline{E} geometry at the double bond is secure in $\underline{2}$ (R = H) only, as shown by a characteristic trans \underline{J} value (18 Hz). Homologues ($\underline{2}$, R = alkyl) were obtained in one, presumably \underline{E} form only according to GC and NMR.
- 8. P.F. Jones, M.F. Lappert and A.C. Szary, <u>J. Chem. Soc. Perkin I</u>, 2272 (1973).

(Received in UK 15 June 1981)